Acknowledgement

This research was supported in part by a scientific research grant from the Ministry of Education, under Contract Nos 285168 and 265212.

References

- 1. D. J. GODFREY, Metals and Materials 2 (1968) 305.
- R. N. KATZ and E. M. LENOE, "Treatise on Materials Science and Technology, Vol. 9, Ceramic Fabrication Processes", (Academic Press, New York, 1976) p. 241.
- 3. P. T. B. SHAFFER, J. Amer. Ceram. Soc. 47 (1964) 466.
- 4. O. O. ADEWOYE and T. F. PAGE, J. Mater. Sci. 11 (1976) 981.
- 5. E. H. VOICE and V. C. SCOTT, "Special Ceramics 5", edited by P. Popper (British Ceramic Research Association, Stoke-on-Trent, 1972) p. 1.
- D. J. GODFREY and K. C. PITMAN, "Ceramic for High Performance Applications", edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Massachusetts, 1974) p. 425.
- A. G. ATKINS and D. TABOR, Proc. Roy. Soc. A292 (1966) 441.

- L. M. FITZGERALD, J. Less-Common Metals 5 (1963) 356.
- 9. K. NIIHARA, ibid. 65 (1979) 155.
- 10. Y. KUMASHIRO, A. ITOH, T. KINOSHITA and M. SOBAJIMA, J. Mater. Sci. 12 (1977) 595.
- 11. D. L. KOHLSTEDT, ibid. 8 (1973) 777.
- 12. L. BSENKO and T. LUNDSTROM, J. Less-Common Metals 34 (1974) 273.
- R. D. KOESTER and D. P. MOAK, J. Amer. Ceram. Soc. 50 (1967) 290.
- 14. A. G. ATKINS, A. SILVERIO and D. TABOR, J. Inst. Metals 94 (1966) 369.
- 15. P. L. FARNSWORTH and R. L. COBLE, J. Amer. Ceram. Soc. 49 (1966) 264.
- P. MARSHALL and R. B. JONES, *Powd. Met.* 12 (1968) 193.

Received 3 November and accepted 14 November 1978.

> T. HIRAI K. NIIHARA The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai 980, Japan

Ternary tantalate compositions

The purpose of this communication is to present refined powder X-ray diffraction data and some properties of tantalates selected for a previous study [1] of possible low thermal expansion oxides. Four ternary* $A^{3+}B^{4+}C^{5+}O_6$ compounds were prepared, AlTiTaO₆, AlHfTaO₆, YTiTaO₆, and YHfTaO₆. Of these, AlTiTaO₆ and YTiTaO₆ had been previously studied [2, 3], but no powder X-ray diffraction data were available for them.

These oxides were prepared by co-hydrolysis to the mixed metal hydroxides from solutions of the respective metal alkoxides, using starting materials nominally of $\geq 99\%$ purity. Coprecipitated products were vacuum-dried and calcined for 40 h at 800 to 1000° C in air. Calcined powders were isostatically pressed into rods and sintered at a temperature ~20 to 30% below the melting point in argon.

Specimens were analysed chemically (X-ray

fluorescence), their densities were measured by mercury intrusion porosimetry, and their melting points were determined by differential thermal analyses. Electrical resistivities were obtained with a digital multimeter or megohmmeter, and thermal expansion was determined with a fused silica pushrod dilatometer. Preparation of samples and property determinations have been discussed in more detail elsewhere [1].

The powder X-ray diffraction (XRD) patterns were obtained from a 114.6 mm Debye–Scherrer camera (with CuK α radiation) and were corrected for film shrinkage. A densitometer[†] scan was made of each film, and integrated intensities recorded with a digitiser[‡]. Lattice constants were refined by a least squares fit to the Nelson–Riley extrapolation function [4]. Theoretical densities were calculated from refined lattice parameters. The structure types were determined by comparison of observed diffraction data with reported data for analogous structures. The structure types and

*With respect to cations or systems (i.e. $A_2O_3 \cdot 2BO_2 \cdot C_2O_5$). †GAF Model 652. ‡Hewlett-Packard 9821A Calculator with Model 20 Digitizer Pac.

0022-2461/79/092255-06 \$02.60/0 © 1979 Chapman and Hall Ltd.

TABLE I C	haracterization of four ABCO ₆ tantalates							
Compound	Structure type*	Melting point	Average	Electrical	Chemical analyses			Bulk _
		ි ට ච	coefficient of linear thermal expansion $(\bar{\alpha} \times 10^6)$ in the range 25 to 1000° C	resistivity (Ω cm)	Oxide component	Theoretical (%)	Measured (%)	density ¹ (g cm ⁻³)
AlTiTaO ₆	Cassiterite (Vol. 1, p. 250), SnO ₂ , space group P4 ₂ /mmm (136)	1698	7.09	3.7 × 10 ⁴	Al ₂ O ₃ TiO ₂ Ta ₂ O ₅	14.5 22.7 62.8	14.22 22.47 63.37	4.51
AlHfTaO ₆	Alpha lead oxide (Vol. 1, p. 259) $\alpha - PbO_2$, space group <i>Pbcn</i> (60)	2160	4.43		Al ₂ O ₃ HfO ₂ Ta ₂ O ₅	10.6 43.6 45.8	10.83 44.96 44.72	5.78
Y TiTaO ₆	Columbite (Vol. 3, p. 362), Nb ₂ (Fe, Mn)O ₆ , space group <i>Pbcn</i> (60)	1750	7.49	1.1×10^{8}	Y ₂ O ₃ TiO ₂ Ta ₂ O ₅	27.2 19.4 53.4	27.13 19.40 53.85	4.51
YHfTaO,	Type A: unknown	1910	6.56	3.6×10^{7}	Υ ₂ Ο ₃ HfO ₂ Ta, O ₂	20.7 38.7 40.6	20.78 37.03 41.70	7.09
YHfTaO ₆	Type B: fluorite (Vol. 1, p. 239), CaF ₂ , space group $Fm3m$ (225)				c z			
±17_1	1 marshess and a start of the s							

*Volume and page number refer to [7] . † Of sintered specimens used for resistivity and expansion tests.

AIII_{6}				Ann au		
Observed d-spacings (Å)	Calculated d-spacings (Å) [†]	Indices (h k l)	Relative intensities [‡]	Observed d-spacings (A)	Calculated d -spacings (Å) [†]	Indices (h k l)
3.216	3.238	110	77	3.538	3.564	110
2.485	2.489	101	70	2.879	2.900	111
2.283	2.290	200	20	2.710	2.730	020
2.182	2,187	111	13	2.480	2.494	002
2.044	2.048	210	5	2.383	2.395	021
1.683	1.685	211	100	2.341	2.353	200
1.616	1.619	220	37	2.124	2.134	121
1.481	1.483	002	19	2.034	2.044	112
1.446	1.448	310	32	1.837	1.841	022
1.357	1.357	301	42	1.775	1.782	220
1.347	1.348	112	36	1.706	1.712	202
1.244	1.245	202	16	1.691	1.697	130
1.167	1.168	321	31	1.673	1.678	221
1.145	1.145	400	11	1.602	1.607	131
1.093	1.094	222	25	1.503	1.508	310
1.078	1.079	330	16	1.503	1.507	113
1.040	1.040	411	32	1.444	1.450	222
1.037	1.037	312	37	1.439	1.443	311
1.024	1.024	420	16	1.416	1.420	023
0.967	0.968	421	1	1.400	1.403	132
0.967	0.966	103	} 16	1.314	1.317	041
0.907	0.906	402	23	1.314	1.312	321
0.899	0.898	510	26	1.286	1.290	312
0.891	0.890	213		1.245	1.247	004
0.889	0.889	412	} 46	1.213	1.216	223
0.875	0.875	501)	1.186	1.188	330
0.875	0.875	431	82	1.186	1.188	133
0.873	0.873	332)	1.175	1.177	114
0.843	0.843	422	40	1.175	1.176	400
0.830	0.830	303	37	1.149	1.156	331
0.818	0.817	521		1.149	1.149	241
0.818	0.817	313	} 83	1.133	1.134	024
0.810	0.810	440	19	1.115	1.117	313
0.786	0.785	530	36	1.101	1.102	204
0.780	0.781	441)	*7 1 222	(41
0.780	0.780	323	96	$^{*}Z = 1.333$	(or 4MeO_2);	theoretic
0.780	0.779	432	J	8.33 g cm ³ ; ot	served density = 3	s.27 g cm
				- /		

TABLE II Powder X-ray diffraction pattern for $\Delta 1 T_i T_2 \cap *$

TABLE III Powder X-ray diffraction pattern for AlHfTaO.*

Relative

*Z = 0.667(or $2MeO_{2}$; theoretical density = $6.26 \,\mathrm{g}\,\mathrm{cm}^{-3}$; observed density = $6.26 \,\mathrm{g}\,\mathrm{cm}^{-3}$.

[†]Based on tetragonal cell with a = 4.5793 + 0.0003 Å and $c = 2.9659 \pm 0.0003$ Å.

[‡]For Cu $K\alpha_{1,2}$ radiation, integrated; for approximately equal-valued observed d-spacings, a single value of observed intensity is given.

unrefined lattice constants of two of the compounds (AlTiTaO₆ and YTiTaO₆) have been reported [2, 3]. For one compound, YHfTaO₆, an unknown structure type was apparent; its X-ray diffraction pattern was computer-indexed [5, 6].

Table I summarizes the purity, properties, and structures determined for these tantalates. Two structures of YHfTaO₆ were observed. After tical density =m⁻³.

Based on orthorhombic cell with $a = 4.706 \pm 0.002$ Å, $b = 5.460 \pm 0.003$ Å, and $c = 4.989 \pm 0.002$ Å.

[‡]For Cu $K\alpha_{1,2}$ radiation; integrated; br = broad peak; for approximately equal-valued observed d-spacings, a single value of observed relative intensity is given.

calcining ($\leq 1000^{\circ}$ C), the cubic phase existed. On sintering at 1350°C for 18 h, the material completely transformed to an unknown structure. Later experiments showed that transformation occurs as low as 1200° C. The exact point is uncertain since thermal analysis failed to indicate the transformation. It is possible that the cubic phase occurs because of the co-precipitation technique, and is metastable at all temperatures, with its transforma-

Observed d-spacings (A)	Calculated <i>d</i> -spacings (A) [†]	Indices (h k l)	Relative intensities [†]
3.687	3.704	250	41
3.117	3.122	300	100
3.117	3.121	012	
3.068	3.072	022	81
2.957	2.964	091	80
2.957	2.961	112	
2.916	2.919	122	94
2.805	2.795	301	16
2.723	2.749	321	10
2.723	2.732	2.90	27 br
2.723	2.726	0101	27 01
2.598	2.597	212	53
2.502	2 505	291	24
2.459	2.665	242	52
2.109	2.404	082	13
2.412	2.413	380	15
2.412	2.400	2101	2
2.353	2.330	2 10 1	2
2.555	2.546	401	
2.100	2.194	401	0
2.100	2.190	522	ð
2.166	2.100	411	2
2.141	2.144	4 3 1	2
2.092	2.092	2121	(
2.092	2.092	003	6
2.092	2.087	013	
2.062	2.063	451	0
2.062	2.060	292	8
2.062	2.059	470	
1.912	1.910	382(203,213)	41
1.884	1.883	073 (402,233)	28
1.849	1.849	392 (4100, 243, 173)	90 br
1.760	1.767	531	21
1.741	1.738	303	58
1.726	1.726	3 2 3 (3 1 3)	43
1.700	1.705	283	19
1.676	1.679	580(482)	15
1.653	1.658	571	6
1.621	1.622	581(2103)	20
1.601	1.599	5 2 2 (4 10 2)	19
1.576	1.579	383 (591)	29 br
1.555	1.553	620(602,024,403	26
		610,413,423	
		034,104,114	
1.533	1.532	562 (044, 134, 443)	63
1.493	1.491	660 (463, 204, 214)	78 br
1.469	1.468	670 (074, 234, 473)	34
1.445	1.445	254 (592, 084, 680	17
		483	- ·

TABLE V Powder X-ray diffraction pattern for YHfTaO₆ (type A)*

*Z = 16 (or 48MeO₂); theoretical density = 8.13 g cm⁻³; observed density = 8.17 g cm⁻³.

[†]Based on orthorhombic cell with $a = 9.367 \pm 0.008$ Å, $b = 30.27 \pm 0.08$ Å, and $c = 6.275 \pm 0.004$ Å; for d < 2 Å, calculated values are shown only for the plane with a spacing nearest the observed value; other possible contributing planes are given in parentheses.

[‡]For Cu $K\alpha_{1,2}$ radiation, integrated; br = broad peak; for approximately equal-valued observed *d*-spacings, a single value of observed intensity is given.

TABLE IV Powder X-ray diffraction pattern for YTiTaO₆*

Observed	Calculated $d_{\text{spacings}}(k)^{\dagger}$	Indices	Relative
u-spacings (A)	u-spacings (A)	(1 ~ 1)	mitensities -
5.213	5.195	110	4
3.639	3.663	310	16
3.345	3.368	211	16
2.978	2.994	311	100
2.767	2.779	020	16
2.620	2.632	411	7
2.584	2.597	002	1 12
2.584	2.587	510	
2.554	2.557	102	11
2.431	2.450	021	35 hr
2.431	2.435	600	} 55 61
2.185	2.189	321	8
2.112	2.119	312	8
2.029	2.035	421	8
1.973	1.978	412	6
1.936	1.941	502	12
1.893	1.898	022	20
1.875	1.882	122	9
1.826	1.833	512	
1.826	1.832	620) 28
1.769	1.777	602	28
1.724	1.733	131	
1.724	1.732	330	51
1.724	1.727	621	J
1.639	1.646	811	1
1.639	1.643	331	23
1.639	1.643	113)
1.623	1.627	702	9
1.609	1.612	213	18
1.587	1.592	522	
1.587	1.589	721) °
1.563	1.565	313	
1.563	1.565	530	16
1.563	1.562	712	J
1.502	1.506	413)
1.502	1.500	132	17
1.502	1.497	622	J
1.489	1.493	911	50
1.474	1.477	232) 11
1.474	1.470	023) 11
1.460	1.464	821	20
1.460	1.462	123	f 20
1.438	1.443	812)
1.438	1.441	332	20
1.438	1.441	223	J

*Z = 4 (or 12MeO_2); theoretical density = 6.51 g cm⁻³; observed density = 6.28 g cm⁻³.

[†]Based on orthorhombic cell with $a = 14.612 \pm 0.007$ Å, $b = 5.558 \pm 0.003$ Å, and $c = 5.195 \pm 0.002$ Å.

[‡]For Cu $K\alpha_{1,2}$ radiation; integrated; br = broad peak; for approximately equal-valued observed *d*-spacings, a single value of observed relative intensity is given.

TABLE VI Powder X-ray diffraction pattern for YHfTaO₆ (type B)*

Observed d-spacings (Å)	Calculated d-spacings (A) [†]	Indices (h k l)	Relative intensities‡
2.998	2.990	111	100
2.592	2.589	200	32
1.835	1.831	220	52
1.562	1.561	311	37
1.496	1.495	222	8
1.293	1.295	400	5
1.190	1.188	331	12
1.157	1.158	420	9
1.058	1.057	422	5
0.996	0.997	511	8
0.996	0.997	333	
0.917	0.915	440	6
0.876	0.875	531	17
0.864	0.863	600	11
0.864	0.863	442	

*Z = 1.333 (or 4MeO_2); theoretical density = 8.68 g cm^{-3} .

Based on cubic cell with $a = 5.178 \pm 0.002$ Å.

[‡]For Cu $K\alpha_{1,2}$ radiation; integrated; for approximately equal-valued observed *d*-spacings, a single value of observed intensity is given.

tion kinetically inhibited (until $> 1000^{\circ}$ C). The two phases are designated type A (unknown) and type B (cubic) YHfTaO₆.

Powder X-ray diffraction data are given for AlTiTaO₆ (Table II), AlHfTaO₆ (Table III), YTiTaO₆ (Table IV), YHfTaO₆, type A (Table V), and YHfTaO₆, type B (Table VI). For each of these phases, *d*-spacings were determined to as low a value as thought necessary for adequate identification. Refined lattice parameters, number of formula units per unit cell (Z), theoretical and observed (apparent specific gravity) densities are shown in the tables.

The X-ray diffraction pattern of YHfTaO₆ (type A) appears to represent a new structural type for ABCO₆ oxides. Initial indexing attempts (cubic, tetragonal, or hexagonal) were not successful, and a rather large orthorhombic cell was necessary to account for the observed reflections. This cell could be a supercell of one of the other types (cassiterite, alpha lead oxide, or columbite), or it could be mathematical coincidence. Whenever a cell with large parameters (i.e. 30 Å) is required for indexing, single-crystal data are necessary for substantiation.

The question of whether specific ABCO₆ phases are actually compounds was considered by Blasse [2]. As regards the four tantalate compositions studied here, three immediately qualify as ternary oxide compounds since the individual oxide components to not exhibit similar structures – AlHfTaO₆, YTiTaO₆, and YHfTaO₆. Since AlTiTaO₆ has the cassiterite structure, it could be considered as a solid solution because TiO₂ (rutile) and TaO₂ have the same tetragonal structure; thus, Al³⁺ could be considered as substituting into this structure.

References

- C. E. HOLCOMBE, M. K. MORROW, D. D. SMITH and D. A. CARPENTER, Survey Study of Low-Expanding, High Melting, Mixed Oxides, Y-1913, Union Carbide Corporation-Nuclear Division, Oak Ridge, Tennessee, February (1974).
- 2. G. BLASSE, Mat. Res. Bull. 2 (1967) 497.

A new method for the preparation of high modulus thermoplastic films

In the last decade much effort has been made to obtain fibrous crystals of polymers with ultrahigh tensile strength and tensile modulus [1-9]. Also, a great deal of work has been done to understand the morphology and the crystallization mechanisms of fibres prepared by strain induced crystallization [10–14]. Theoretical considerations [15–19] have shown that longitudinal flow gradients of solutions or melts are the most important factors involved in extending the polymer molecules during flow processes. Therefore, most of the methods for crystallization of fibres are necessarily based on this principle. In industrial methods longitudinal flow gradients are usually achieved by high spinning rates. It is the intention of this paper to report a method which vields an extremely high longitudinal flow gradient ($\epsilon = 4 \times 10^4 \text{ sec}^{-1}$) by relatively low take up speed ($V_1 = 4 \text{ cm sec}^{-1}$) and high quenching rate in a small flow region during the preparation process. It will be shown that the flow gradient obtained by our method is sufficient to induce fibrous crystallization to a large volume fraction. The method reported here is of general applicability to semicrystalline polymers and offers 3. Idem, J. Inorg. Nucl. Chem. 28 (1966) 1122.

- 4. D. E. WILLIAMS, Technical Report IS-1052, Ames, Iowa (1964).
- C. E. HOLCOMBE, Determination of the Crystal System and Lattice Parameters of Previously Unreported Compounds, Y-1687, Union Carbide Corporation-Nuclear Division, Oak Ridge, Tennessee, September (1969).
- 6. O. W. HERMANN and A. L. COFFEY, INDOX Code for Orthorhombic Indexing, unpublished computer code at Oak Ridge National Laboratory.
- 7. R. W. G. WYCKOFF, "Crystal Structures" (Interscience, New York, 1965).

Received 28 November 1978 and accepted 5 January 1979.

C. E. HOLCOMBE Development Division, Oak Ridge Y-12 Plant, Union Carbide Corporation, Nuclear Division, Oak Ridge, Tennessee, USA

easy means for the preparation of polymeric materials with high tensile modulus and strength.

For preparing the films, polymer solutions (~ 0.3 to 1%) are prepared in suitable solvents. A glass slide having a smooth surface is placed on a heating plate and allowed to attain the particular preparation temperature. For polyethylene (Lupolen 5261 Z, MW = 3×10^5) the solvent used is xylene, and the preparation temperature ranges from 122° C to 130° C. Usually, the chosen temperature for the film preparation is just above the highest crystallization temperature of the relaxed undercooled melt. In order to avoid temperature fluctuations, the heating plate is placed in a specially prepared small cabinet. The solution is dispersed uniformly over the glass slide, and the solvent is allowed to evaporate. The resulting thin molten polymer film (thickness about $\leq 1 \,\mu m$) is taken off from one end of the glass slide with the help of a glass rod coated with the respective polymer and simultaneously wound onto a glass slide for supporting the thin oriented film (Fig. 1).

For transmission electron microscopic (TEM) investigations, the oriented film is cut into pieces and mounted onto copper grids. The microscope used is a JEOL JEM 200A operated at 100 kV.

The deformation ratio is assessed using the gold